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1 Introduction
Throughout the diverse range of science and engineering applications, there is a growing desire to develop
computational methods that can reliably predict the behavior of complex systems. Specifically, there is a
strategic need for tools that can robustly forecast the behavior of complex physical systems, where data
may be high-dimensional, noisy, or sparse, and models of the system may be time-dependent or include
uncertainty. We usemystic [9, 11] to build tools that leverage statistical learning, physics-informed learning,
and active learning in the efficient generation of reliably predictive surrogates for complex physical systems.
mystic is a robust, proven, open-source optimization and uncertainty quantification toolkit with over a decade
of use in the design and optimization of neutron instrumentation [2], solar-powered drones [5], and gas-
guns [13, 15, 4], and in iterative tuning of models for Raman spectroscopy [6] and elastoplastic materials
strength [13]. Recent developments have focused on automated learning of statistically robust surrogates
under uncertainty, with applications in materials in extreme environments [1], nanostructures [7], materials
simulations and strength models [12], and the failure of shielding under particle radiation [8]. In 2020,
McKerns demonstrated active learning of optimally robust surrogates with respect to new simulated data for
molecular dynamics simulations of materials mixing in warm dense matter [3], and is currently applying
active learning to the automated steering of particle accelerator beams and the optimal design and control
of quantum optical sensor instrumentation.

2 Methods
Estimation methods, such as interpolation and machine learning, are commonly used to build computa-
tionally inexpensive surrogates for physical models. Using an estimator to build a surrogate generally is
a two-step process. First, a surrogate is fit by “training” on a subset of the existing data; then the surro-
gate’s performance is “tested” on the remaining (holdout) data. If the surrogate’s testing “score” is suffi-
ciently good, we denote the surrogate as being instantaneously valid with respect to all existing data. Often,
the validation of an estimator against real-world data generally is a laborious manual process that lacks a
well-defined notion of solution. As a result, different teams with the same goals and data will find vastly
different estimators, solutions, and notions of uncertainties. Commonly, it is assumed that if any new data
is encountered, the surrogate will perform approximately as well as it did with respect to the holdout data.
This assumption is often poor, especially when data is sparse or noisy, or the model is highly nonlinear,
time-dependent, or includes uncertainty. Worse still, when new data eventually exposes a surrogate as a
poor approximation, there is often not a well-defined process to update the surrogate. As we are interested
in finding a surrogate that is asymptotically valid with respect to any future data, we will pose the online
learning of a robust surrogate as a global optimization, where iterative updates to candidate surrogates are
driven by the time-evolution of the surrogate performance with respect to new data. Fig. 1 shows an online
learning procedure for generating robust predictive surrogates for complex systems. For example, we can
use mystic to tune a neural network (ANN) to minimize the upper bound on the expected error between the
predictions from the ANN and results generated by an expensive model (Fig. 2), where this entire workflow
is used within retrain(surrogate) in Fig. 1 to ensure the surrogate is always optimally robust with
respect to the data. Alternately, we can use Fig. 1 to generate a surrogate for f(x|h) in Fig. 2, when f is
prohibitively expensive within the calculation of the most robust model for the existing data.

3 Examples
A common goal in areas of science and engineering is to guarantee the quality of assessments made for per-
formance and risk in complex systems. Often, the knowledge of the system is incomplete or contains some
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Figure 1: The current surrogate is retrieved from the surro-
gate DB and then tested for validity whenever new data is
collected. If the surrogate is valid, it is then evaluated; oth-
erwise, it is retrained and again checked for validity. If the
surrogate is still not valid, then we use a sampler to request
new data points. When a surrogate improves upon the best
test score, the surrogate is stored.

Figure 2: The inner loop trains the LearnedModel (e.g.
an ANN) on Data sampled from an expensive function
f(x|h), and computes the upper bound on the expected
misfit between f and the ANN. The outer loop varies the hy-
perparameters p while minimizing the expected misfit.

form of uncertainty. One promising approach to address this challenge is OUQ developed by Owhadi et al
[13, 15, 10]. OUQ employs operator-like coordinate transforms to describe a system under uncertainty as a
model with a set of possible outcomes formulated on a discrete probability distribution. OUQ produces a
constrained global optimization, with optimization parameters composed of the probability-weighted input
coordinates and a statistical objective (i.e. minimize expected misfit). OUQ requires that any knowledge
of the system to be utilized in the model validation must be quantified and incorporated as constraints in
the global optimization. As in Fig. 2, we leverage mystic to generate a machine-learned surrogate for some
expensive model (i.e. a simulation or instrument), and an inverse method (like OUQ) to calculate the bounds
on the expected misfit under uncertainty. mystic also provides a means of imposing constraining information
from different sources on the search space of an optimizer. Once all available information has been encoded
as constraints, the resulting information-constrained search space is used to produce an optimal estimator.
This guarantees that all candidate solutions in the information-constrained search space are valid, and solu-
tions that are most critical for design decisions are found at the bounds. In fact, the calculation of rigorous
bounds under uncertainty is fundamental in the design and construction of an optimal estimator – and is, in
essence, what the combination of OUQ andmystic provides. Surrogates generated with the above procedure
can be seen in Figs. 3 and 4. Fig. 3 highlights the importance of the strategy used in sampling new points.
An ensemble of optimizers is shown to effectively discover all the critical points of the Rastrigin function,
while traditional sampling strategies (e.g. sampling from a Gaussian distribution) only capture the overar-
ching trend. Fig. 4 further highlights how optimizer-driven sampling generates a higher density of samples
at critical points on the surface, and facilitates the generation of a valid surrogate for a complex model.

Figure 3: Test scores for actively learned surrogates of the
Rastrigin function, as a function of the sampling strategy.
Test scores for sampling from a Gaussian distribution (or-
ange) converge more quickly than optimizer-directed sam-
pling (blue); however, are not as accurate. Plots are, clock-
wise, the surrogate learned using Gaussian sampling, truth,
and the surrogate learned using optimizer-directed sampling.

Figure 4: Robust surrogates for data generated from a one-
component plasma LAMMPS [14] simulation. Surrogates
for the radial distribution function and screening function
were simultaneously learned, similarly for the self-diffusion
and viscosity. The blue dots highlight how optimizer-driven
sampling generates a higher density of samples at critical
points on the surface.
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